The complexity of counting locally maximal satisfying assignments of Boolean CSPs

نویسندگان

  • Leslie Ann Goldberg
  • Mark Jerrum
چکیده

We investigate the computational complexity of the problem of counting the locally maximal satisfying assignments of a Constraint Satisfaction Problem (CSP) over the Boolean domain {0, 1}. A satisfying assignment is locally maximal if any new assignment which is obtained from it by changing a 0 to a 1 is unsatisfying. For each constraint language Γ, #LocalMaxCSP(Γ) denotes the problem of counting the locally maximal satisfying assignments, given an input CSP with constraints in Γ. We give a complexity dichotomy for the problem of exactly counting the locally maximal satisfying assignments and a complexity trichotomy for the problem of approximately counting them. Relative to the problem #CSP(Γ), which is the problem of counting all satisfying assignments, the locally maximal version can sometimes be easier but never harder. This finding contrasts with the recent discovery that approximately counting locally maximal independent sets in a bipartite graph is harder (under the usual complexity-theoretic assumptions) than counting all independent sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing Assignments of Boolean CSPs

Given an instance I of a CSP, a tester for I distinguishes assignments satisfying I fromthose which are far from any assignment satisfying I. The efficiency of a tester is measuredby its query complexity, the number of variable assignments queried by the algorithm. In thispaper, we characterize the hardness of testing Boolean CSPs according to the relations usedto form const...

متن کامل

Approximating Partition Functions of Bounded-Degree Boolean Counting Constraint Satisfaction Problems

We study the complexity of approximate counting Constraint Satisfaction Problems (#CSPs) in a bounded degree setting. Specifically, given a Boolean constraint language Γ and a degree bound ∆, we study the complexity of #CSP∆(Γ), which is the problem of counting satisfying assignments to CSP instances with constraints from Γ and whose variables can appear at most ∆ times. Our main result shows t...

متن کامل

A Trichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs

We determine the computational complexity of approximately counting the total weight of variable assignments for every complex-weighted Boolean constraint satisfaction problem (or CSP) with any number of additional unary (i.e., arity 1) constraints, particularly, when degrees of input instances are bounded from above by a fixed constant. All degree-1 counting CSPs are obviously solvable in poly...

متن کامل

Approximate Counting for Complex-Weighted Boolean Constraint Satisfaction Problems

Constraint satisfaction problems (or CSPs) have been extensively studied in, for instance, artificial intelligence, database theory, graph theory, and statistical physics. From a practical viewpoint, it is beneficial to approximately solve CSPs. When one tries to approximate the total number of truth assignments that satisfy all Boolean constraints for (unweighted) Boolean CSPs, there is a know...

متن کامل

An approximation trichotomy for Boolean #CSP

We give a trichotomy theorem for the complexity of approximately counting the number of satisfying assignments of a Boolean CSP instance. Such problems are parameterised by a constraint language specifying the relations that may be used in constraints. If every relation in the constraint language is affine then the number of satisfying assignments can be exactly counted in polynomial time. Othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 634  شماره 

صفحات  -

تاریخ انتشار 2016